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Small objects positioned in a high-frequency ultrasonic beam can be imaged by Bragg diffraction 
of light. The first order contains one image. Using a light beam with a considerable convergence 
angle and reducing the ultrasonic frequency, one observes that the second diffraction order 
contains two adjoining images, the third order three, etc., and that the positive orders are the 
mirror images of the negative ones. These experimental observations are explained by the 
present theory and general expressions for the angular distribution of the light in the different 
diffraction orders are presented in the form of a series expansion. Evidence for the multiple 
images in the higher diffraction orders is found by analyzing the first term in t.his expansion. The 
center-to-center separation of the images within the higher orders is found to be proportional to 
the ultrasonic frequency and the interaction width. 

I. INTRODUCTION 

In the study of the diffraction of light by ultrasound, 
quite a number of mathematical models can be used to 
predict accurately the diffraction direction, frequency shift, 
and intensity of the various orders which build up the 
pattern.‘” Applications of these models can be found in 
telecommunication, optical signal processing, optical com- 
puting, and nondestructive testing. Most models concen- 
trate on describing and analyzing the diffraction effects for 
a known shape and time history of the ultrasonic wave. 
Only a few contributions have been published in which a 
reconstruction method for the diffracting sound wave is 
proposed and established. Some of these models include 
time or space reconstruction in the Raman-Nath regime of 
acousto-optic interaction;5-‘2 others use the more common 
Bragg diffraction to visualize the cross section of a sound 
beam.‘3>i” Whereas the Raman-Nath regime requires ex- 
tensive data analysis for cross-sectional mapping, Bragg 
imaging has the advantage of copying all information ex- 
actly at once in the first diffraction order. 

teraction where both the light and sound fields are accu- 
rately represented by their plane-wave decomposition to- 
gether with multiple scattering. They investigated the 
usefulness and validity of this approach by deriving limit 
case expressions for plane-wave Raman-Nath and Bragg 
diffraction. The analysis of the solutions for arbitrary light 
and sound field distribution, however, heretofore has been 
limited to extreme Bragg conditions involving only two 
diffraction orders (order zero and plus or minus one). “J’ 

A means of studying Bragg imaging was developed 
first by Korpel. He showed that objects placed in the ul- 
trasonic beam were imaged in the first diffraction order and 
explained t.he results in terms of ray optics.13 Later Korpel 
explained the mapping by considering the Bragg diffraction 
process as one of parametric mixing. I4 Using Fourier anal- 
ysis and the formalism of Feynman diagrams, Korpel and 
Peon”-” developed a theory for strong acousto-optic in- 

In 1971, Martin, Adler, and Breazeale” reported the 
experimental observation of multiple images in higher- 
order Bragg diffraction. Using a light beam with a consid- 
erable convergence angle and reducing the ultrasonic fre- 
quency, they were able to generate a one-to-one mapping in 
the first order together with a double mapping in the sec- 
ond diffraction order, and a triple mapping of the sound 
beam in the third order (see Fig. 1). By using a transmis- 
sion plate as a frequency filter, Martin and co-workers 
proved that multiple images in the higher diffraction orders 
are not the result of nonlinear properties of the medium. 
Their theoretical explanation for multiple Bragg scattering 
was based on the imaging results for the first diffraction 
order, but is not in depth enough to describe all of the 
observed diffraction effects, e.g., the linear frequency and 
width dependence of the separation between two images in 
the higher orders, Na” gave another explanation based on 
the plane-wave theory of Blomme and Leroy,” but. his 
model never includes the notion of profiled sound and 
therefore is incomplete as well. 

a1Presently at the National Center for Physical Acoustics, University of In this work, we present a theoretical study of multiple 
Mississippi, University, Mississippi 38677. Bragg imaging by investigating the interaction of a multi- 
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FIG. 1. Phirtograph showing single, double, nnd triple mapping of a loop 
in the first, swx~d. :md third diiTrxtion ordcrrj of a convergent light bzam 
by a.11 ultrasmic wa\t% at IO htkiz frequency (Ref. 20). 

directional light beam and a profiled sound beam. Starting 
from the spectral decomposition of sound and light beams, 
we obtain a series expansion for the angular spectrum of 
any ditfraction order by means of a backsubstitution 
method, introduced by Aggarwal’” in 1950 for plane light 
wave diffraction by plane continuous ultrasonic waves. 
This allows us to find evidence for the appearance of mir- 
ror images. Analyzing the first term in the series expansion 
valid for high ultrasonic frequencies, we explain the gen- 
eration of multiple adjoinin g images in the higher orders 
and examine the center-to-center separation of the images 
within these higher diffraction orders as a function of ul- 
trasonic frequency and tranducer width. 

II. THEORY 

A. Raman-Nath system for arbitrary light-sound 
interaction 

Taking the Maxwell equations as a starting point, it 
can be shown that the diffraction process of a light beam by 
an ultrasonic grating is totally determined by the solution 
of following set of equations:“” 

E(x,zJ) =Y(xpJ)ei”‘f, ( la) 

#‘I! a”Y 
s (x,z,t) i-a_72 (x,z2tj = --k21~2(~~,~,t)Y(rr,~,rj. (lb) 

In these diffraction equations, E is the magnitude of the 
electric Geld of the light with linear polarization in the y 
direction, (V is the circular frequency ( ==22rrv), k is the 
propagation constant of the light beam in vacuum ( = 27r//z 
in which ;ii is the wavelength, also referring to vacuum), 
and II the time- and space-dependent refractive index in- 
duced by the presence of the ultrasonic wave. Throughout 
the test, the electrical engineering phasor convention is 
used with time dependence exp(lut), where i” = - 1. A 
general scheme of the interaction of profiled light and 
sound together with the coordinate system used in this 
study is illustrated in Fig. 2, where we identify the propa- 
gation direction of the sound beam with the x axis. We 
assume that the propagating sound beam profile does not 
change within the interaction region where it is illuminated 
by the light beam. 

We want to investigate a sound profile at x=x, for 
which the amplitude is nonzero only within the range 

I 

s 
SOI!ND 

I I 

b 
.>$ 

,+7- 
ir 

LltikI‘l 
;zi 

a .$A 

L ._ > R 

3 - 

x = X” 
.I ,’ 

iX0.L.i (%I, I.+! - 

4--- --- --* 
i. 

FlG. 2. General geometry for the interaction of profiled light and sound. 

(L , L-, ) along the z axis. The electric fields of the inci- 
dent light and the sound beam distribution as a function of 
g=.x--x0 may then be represented by their angular plane- 
wave spectra, 

Ei*lc((J,t) z~inc(!$J)eio’t, 

with 

(2%) 

s 

-I- il) _ 
qinc({,Z) = Yjnc( no/c,) e ~ir~~k~f2 +A~ &lo A,, (2b) 

--m 

where 

p&, L 

s 

+ m 
%&&) = 2,rr qnc(g,L-)e~""Wg (2c) _ nc 

and 

s 
+m - 

W,z) = ~ ~(Kz)e-~~z~e-i&5 dam, (3a) 

with 

sI(K,j =& J-T Oc S(O,z)eiK~z G!z, 

cc 

so that the refractive index of the medium in which the 
sound wave propagates can be expressed as 

n(g,z,t) =?I-; n^[S(~,z)e’nf-S*(~,Z)e-i~t], (3c) 

with n0 the refractive index of the undisturbed medium, A 
the maximum variation in time and space, and s1 the ul- 
trasonic circular frequency ( =2?rF). The universal nota- 
tions ki=h?--ki and Kz=K'-Ki are used, with K the 
propagation constant of the ultrasound. The superscript * 
stands for the complex conjugate operation. 

The refractive index being periodic in time, we can 
express the solution of the diffraction equation (lb) as a 
Fourier series with the same periodicity, 

Y(&z,t) = C ei”zr2fYm(&z), 
m---m 
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in which we can represent each diffraction order by its 
spectral decomposition, 

Introducing Eqs. (3) and (4) into Eq. (lb), straight- 
forward calculation (neglecting second-order terms in A, 
and taking into account the boundary conditions at 
z=L) leads to the following system of coupled integral 

s 

+m - 
w,n ( SA = V/,~(nokx,z)e-inOkl”e-inflk”i:dno k,. (&) equations for the interaction of both arbitrary light and 

--m sound fields: 

,~‘b-+b& t K,) f z(“ok,) 1 dK, dz’ 

k”n& 2 
r r 

+a -- 
1 

-iZ’[K,+z(n”li,--K,)-z(n”lr,)] &Qz’. (5) 
L JL- J-C.2 

In Eq. (5) we introduced the notation Z(s) 
= &g3 s , where the variable s of the functional Z can 
be equal to no& or n,k,&K,, and we continue to use this 
notation with sometimes even more complicated values for 
s thoughout the text. As carefully indicated in Ref. 24, we 
empasize that @ denotes the virtual plane-wave spectrum 
with phase reference at the origin and not the local plane- 
wave spectrum. 

B. General expressions for the light distribution in 
the diffraction orders 

The solution of this Raman-Nath system of coupled 
equations at z= L, gives the Fourier-transformed ampli- 
tudes of the light distribution in the various diffraction 
o_rders behind the interaction zone. General expressions for 
YJ~~( nak,? L + ) can be found by applying the backsubstitu- 
tion method for consecutive approximations.22 

In the first step we suppose that no light is diffracted, 
which means that 

GmzO for Im[>l. 

The solution for m=O then becomes 

*OinOk.~,L+) =\i;inc(tlfJkm~), (6) 

meaning that indeed all incident light is located in the 
undiffracted order. 

Step 2 assumes that Ge( n&,,L+) is known from the 
first step and that one needs to consider only the undif- 
fracted light and the plus and minus first dilfraction orders. 
The solutions for 9, and @_ t then can be expressed in the 
form of double integrals, 

k”n(,t? L, =-A 
I s 

+ a S(K~)Ulinc(fli>kx-K~) 

2 L -02 - Z(nok,J 

fW 

I 

;i;-,fn&,L+) k%“li L., ZZ- 2 s s +CG ~*iK,)\Vi,,cinokx+K~~) L_- -33 ZC ~dQ /ye”“&- -%&x-+~,r~ -tz(@y) 1 d& dz’, 
which can also be rewritten 

G, Cn&,,L + 1 

k”ng? i-e3 S(Kz)Sinc(tl~k,-Kxf 
T -- 

2 s -cc Zbokx) 

xI,~K:,n,,k.~,L+ IdK,, 
where 

and 

ACK,,n&.J =K;+Z~r&y--K,) -Z&.qq!, 

\ErQ&x,L 4~) 

k”ng? 
s 

Cm ~*(K,);i;i,(tZok,+-K,) 
=- 

2 co W~ok.J 

xI;r(K,,nok,,L,)dKz, 

i7b) 

(7c) 

i7d) 
where Z;t iL~&x,L,) = s L 

and 

B(Kz,nok~J =I&-Z(nokx+K,) +Z(nok,). 

In the next step we assume that all diffraction fields 
with 1 M I>3 are too weak to be detected, and that the 
expressions for the spectral decomposition of the plus and 
minus first orders follows the results deduced in step 2. 
This allows us to find the solutions for the second ditfrac- 
tion orders as quadruple integral expressions and to calcu- 
late a correction for the aeroth-order expression given in 
step 1: 
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(8a9 

I~--(Kz,K~,nok,,L;)= 
-L, 

J 
c-tz’AIKz,n&~ z’ 

s 
e-+z”A( K; ,n,,k,-K,) dz” &‘, 

L L- 

,iZ”&~; .& + K,) n’t” dz’, 

I;$;~(K=,K~,nnkx,L+)~ 
-4 

J 
elz’B(Kz,n”k,) 

L .* s 
z’ e-. ” I+ A(K;,nokx+K,) &” dz’, 

Lmm 

and 

&=” (li,,K; ,nok, ,L t ) = 
s 

Lt p...- ;z’,~i&.,&,) eiz”BM~ ,n,,k,-K,) dz” &‘. 
I J- ._ 

In step 4 we c.an calculate an expression for the third diffraction orders (both plus and minus) and correct the 
expressions for the first-order spectral decompositions by assuming the representation of %Cj, @2, and @. 1 as given in step 
3. Restricting ourselves to the positive diffraction orders, we obtain the following formulas for @, and 5,: 

:x&--- (K~,K~,K~,tlgk.~,L+)dK:)dK:dKZ, (109 A l?-2non UI1(n,&L.t)= =y=- s + a S( KZ)V[linc(nokx--Ksy) 

--m =w~ok,9 
I;(K,,aok,,L,)dKz+(~)3 j:I j:: I’, 

Y i . 
( 

~*(K~)SI(K6)S(K~)Si,,(nok,+K,-K~-K~) 

z(n,ls,9Z(nok,+K,9zCno~~~K~-K.~9 
I3+--(K,,K~,KI’,nok,,L+) 

with 

~(KJs(K~)~*(K~)\Yi,(nok,-K,--Ki+Kzj 
‘~(nok,)Z(n,k,-K~)Z(nok,-K,-K~) 

Z; + (K, ,K; ,K:’ ,nokx , L + ) dK; dK; dK,, (119 

I~-~~(K~,K~,K~,llOkzrsLt)= s Li- e-iz’.A~Kz,n~~kx) ” e-i.“ACK~ .I@, K:x) 

L- s L- s 

zt* 
e - ““‘A($ aok,- Kx- K,;:, dz” dz” &‘, 

L- 

IJi--((Li9~,K~,K~,nok,,L,)= 
s 

L+ . p B( Kz ,n&,) e- iI”A WI ,n~,k.~ + K,) 
L- s 

2” e-iZ”A(K; ,nok,i K,--if;) dz” &, dz’ 
2 

L- 

Ii-+- (Kz,K;s ,K; ,llOk-t,Le+ ) = 

s 

L+ ,-ir’AiKzq,k,) 

s 
“ ei=“B(K~,~~kx--Kx) 

1-c 

.-- iz”‘A(h’~ ,n&, ~~ K.x+ K:) &p &t &, 

L- 

and 
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s 

” Ir-+(KZ,~~,K~,nokx,L,+) = s Lt e- iA1 [ Kz ,t~k,~) e- iz"Ac Ki .n&-- KJ 
J‘ 

p 
e i~“‘Sj~~,}4~k,*-~.~~ $1 dzw dzIz” dye 

1. ._ L- L-. 

The next step would be to find an expression for the 
fourth-order diffraction decompositions together with a 
correction for the second and zeroth orders based on Eqs. 
( 10) and ( 11). Continuing this procedure of consecutive 
backsubstitution for a while, it is obvious that. one can 
write the general expression for the spectral decomposition 
of any diffraction order as a series expansion in which the 
consecutive terms contain more and more complicated in- 
tegral expressions. Supposing m is positive, the rth term in 
the expression for the Fourier transformation of the mth 
diffraction order is a 2 (2r-2 + m )-multiple integral over 

/2r-2+m\ 

\ i r-l 

terms, which corresponds exactly to the number of possible 
ways in which one can reach the mth diffraction order, 
starting from the zeroth order, in a (2r--2+m) combina- 
tion of (r- 1 i-m) elementary upshifted and (r- 1) ele- 
mentary downshifted diffractions. This leads to the same 
idea as used in the Feynman diagram approach of Korpel 
and Poon. ‘s-t5 

The deduction presented here, is based on t.he results 
obtained by means of a backsubstitution method of 
Aggarwa12’ for the case of the interaction between infinite 
plane waves. It is straightforward to check that his expres- 
sions for the diffracted light intensities coincide with our 
results in the case when both light and sound spectral dis- 
tributions are represented by a delta function. 

C. Symmetry properties of the diffraction orders 

Before analyzing the Fourier-transformed amplitudes 
and calculating the light distribution in the diffracted or- 
ders, it is instructive to note some symmetry properties 
which can be deduced from the general series expansion. If 
t-tnki,, = nok sin qi, defines the incidence angle of the light 
beam:n the liquid with respect to the z axis, normal to the 
propagation direction of the sound beam (which we sup- 
pose to be parallel to the x axis), we find that 

FIG, 3. Experimental setup for a multiple Bragg imaging system. 

\i;m(fQ&.~ J) 1 inc=t&, 
,.T 

=(-l)mY_,ti(-nokx,z) [iac--nnokinf 9 
I: 

if 

S(K,) ==ss( -IQ 

and 

\i;,nct ~~0k.J I inc= nOklncr 

= Gin,{ - n&x) 1 inc= -nijki,,c, * 

(124 

( 12b) 

As a consequence, this means that the angular spectra of 
the mth and -mth diffraction order in the case of perpen- 
dicularity between the main propagation directions of light 
and sound are mirror distributions with respect to the nor- 
mal axis if the incident light beam has a symmetric spec- 
trum with respect to this normal axis and if there is no 
phase variation in the sound beam profile along the inter- 
action region (L _ , L, ) at x =x0. Besides, substituting Eq. 
(12a) in Eq. (4b), it can be shown that, under these spe- 
cific circumstances given in Eq. ( 12b), the field distribu- 
tions in opposite orders are mirrored with respect to X-J+, 
i.e., 

~,(~,;,z)=(-l))“Y_,(--,z). (12c) 

In terms of experimental observations, this symmetry 
property explains why the images in the positive orders 
show up like mirror images of those in the corresponding 
negative orders. In the experimental arrangement, as dia- 
gramed in Fig. 3, first IvIartin20 and later Na” use a colli- 
mated laser beam which is first expanded. Then a cylindri- 
cal lens is used to converge the light to make a wedge of 
light symmetrical with respect to the normal axis. By plac- 
ing a wire hook in the ultrasonic field, one obtains images 
as well in the positive as in the corresponding negative 
diffraction orders at the same time. Figure 4, made by 
Ma,” shows that mirror images of the hook appear in both 
plus and minus first diffraction orders as is expected from 
the symmetry properties of Eq. (12~). 

FIG. 4. Photographs of positive and negative first-order Bragg images of 
a hook at a frequency of 20 MHz (Ref. 21). 
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FIG. 5. Representation of a thin uniform light beam at incidence angle 
y’inz . 

D. Imaging in the higher orders 

1. General consicieratlons 

In order to obtain evidence for the appearance of mul- 
tiple images in the higher Bragg diffraction orders when 
using a light beam with considerable convergence angle, we 
focus our attention on the first term in the series expansion 
for the spectral decomposition of the ditfaction orders. The 
reason for this is not only because we can already distin- 
guish that the first term for the first diffraction order con- 
tains single information about the sound beam [Eq. (7)], 
for the second diffracted order two-fold informat.ion [Eq. 
(g)] and for the third-order three-fold information [Eq. 
(lO)lS but also because careful analysis of the general ex- 
pression reveals that the higher-order terms are propor- 
tional to higher powers of the Raman-Nath parameter 
[ta==kA(L, - L_ )] and/or higher powers of the parameter 
l/p ( =-nofik2/K’). This restriction thus means that we are 
working with low-power ultrasound in a high-frequency 
range. In addition we suppose that the convergent light 
beam can be represented by a number of thin light rays 
with equal amplitude and frequency but incident at slightly 
different angles. The angular spectrum of a beam of light 
with uniform amplitude A, over a finite width 0, centered 
at the point (x~,L) and having a direction defined by 
QJ&~ = nok sin pine (see Fig. 5 ), is given by 

-k .:f> &ps”o: rr,K 
.X=.X0 I ._ 

z=L. z=L, 

FIG. 6. Schematic visualization of the r&h-order diffraction of a thin 
light beam incident at pint = - mrpB. 

\S;inc(nOkx) = 
AoD 

2V COS qinc 

sin-t [ 4$( li, - kinc,) /2 COS @nc] } 

’ [noD(kx-ki,,)/2 COS pine] 
&+,L - 

’ 

(13) 

Letting D go to zero, while A,D remains finite, we find for 
the Fourier spectrum of the infinitely small ray through 
(xc,L-) in the direction qinc 

yinc(f@x) = 
A,, Dnok 

2rZ( noki”c.x) 
,in&,L _ 

’ (14) 

For plane-wave interactions it is known that. the rnth 
diffraction order intensity has an extremum for an inci- 
dence angle pint equal to -mrpB, when pR is the Bragg 
angle’ 

A K 
2noi\=2nok * (15) 

Therefore, we are especially interested in the spectral dis- 
tribution of the mth diffraction order generated when a 
thin light beam is incident at the minus mth Bragg angle, 
i.e., when nokinc = -m(K/2) (see Fig. 6). Assuming 
only weak divert&ice of the sound beam [such that we can 
approximate Z(s-+K--K,) by Z(s)], we obtain the follow- 
ing expression for the first term in the series expansion for 
the mth diffracted order: 

,iZ[n&-(m/2)K]L A0 Dnok 

2-s~Z[- (m/2)K] n,“_,ZCnok,+[j-(m/2)]K) 
&Arzokx,L~, 1, (16) 

with 

‘Z 
Hr( q&x >z) = J 

Z~nok,+[r-(m/2)]K}-Z{nok,+[r-i-(m/2)]K} 
K )I H,- , ( nc,k, ,z’ ) dz’ 

L- 

and 

&(n,,k,,z) - 1. 

[We restrict ourselves to cases where nt is a positive integer, but the results for negative values of m are analogous because 
of the symmetry properties given in Eq. ( 12).] 
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In Eq. ( 16) nOkx corresponds to the spectral variation with respect to (m/2)K, which is equivalent to the angular 
variation p around the mth Bragg angle with respect to the normal behind the interaction vessel (see Fig. 6). 

The two-dimensional field of the mth diffraction order at z= L, can be calculated from Eqs. ( 16) and (4b), which 
leads to the following approximation for the mth diffracted amplitude distribution at the exit plane: 

ksi”?? m 
i 1 

A()D&jk 

s 

+m 
~,b%+ I= -2 

f4hoLL,) 
adq - (m/2)K] m -cc 11j,1Z-lnok,+tJ-((m/2)lK} 

Xe-i~z[~~k,+(m/2)RjL+-z[n,k,-(m/2)~jL-)e-i[n”k,+(m/P)Kjf~nok,. (17) 
From Eqs. ( 16) and ( 17) one can write down the expressions for the spectral decomposition and the field distribution 

for the orders m= 1, 2 and 3. 

2. First order m = 1 
Writing Eq. (16) explicitly for m= 1 yields 

k”non^ AoDnok ,iZ[n&-(K/ZjJL- 

y1(nokx+(K’2)vL+)=- 2 2-lrZ( -K/2) Z[n&,+(K/2)] 

L+ Z(n,k,+ (K/2) -Z[nokx- (U2f 1 
X 

s L- K )I . dz, 
(18) 

Substituting the second-order approximation 

Z[n&,+rUW) 1 -Z[nok,+ (r-2) (K/2) 1 
K 

- ( 
n&,+ (Y- 1) (K/2) -- 

no& zz -sin[p+ (r- 1 bpB1 

( 19) 
for r= 1 in Eq. (18) and recalling Eq. (3b), we find that 

“11, (nok+; ,+( n&x+;) 

k’nofi AoDnok 
=--‘a 2 2n-Z(-K/2) 

eiZ[n&x- W2)J L 

(20) 

which can formally be rewritten as follows: 

+) ZCCte Qinc( t&X-F)S( -KS), 

or in terms of angles as 

Gl[qk sin(p+pd,L+I 

(21) 

ZCte @inc[ttok sin(q--qDB) I+!?( --Ksin p). 
(22) 

This result confirms the parametric mixing theory used by 
Korpel’” to prove that the first-order diffraction intensity 
of a small uniform light beam has the same spectral de- 
composition as the sound beam when Bragg conditions 
occur, i.e., when the angle of incidence is equal to the 
minus first Bragg angle. The approach used to derive Eq. 
(22) has the advantage that all approximations needed in 
the derivation are explicitly stated. 

The field distribution in the first diffraction order at the 
exit plane z= L, then becomes an image of the sound 
beam profile at the interaction cross-section x=x0, 

exp{-inok[(L+--L-1 

xcos ~B+i%Bll 

xs . (23) 

Equation (23), which is the mapping function derived by 
Korpel, clearly illustrates the one-to-one mapping of the 
ultrasonic field onto the first diffraction order and exhibits 
the corresponding imaging rules. There is a projection of 
the z coordinate along the interaction region inside the 
sound field at x=x, onto the g coordinate in the observa- 
tion plane at z= L, [see Fig. 7). The minus sign indicates 
a mapping of -z onto +g, while the factor K/irok=2q,, 
accounts for the demagnification of the image of the sound 

2 = -L ; z=L 

X=Q --.._.____ ” ” I ” _ 

1 I 

FIG. 7. Mapping r&s in the positive first diffraction order 
(L+=-L_=Lj. 
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field proportional to the ratio of the frequencies of the 
ultrnsonic wave and the light wave. (L, - L- ) represents 
the acousto-optic interaction length, while the term 
(I., + L-)c,zI~ in the sound field function S takes into ac- 
count the position of the sound beam with respect to the 
theoretical origin z=O, so that the optical image is always 
centered raround S= 0. 

Although Eq. (23) predicts an exact image indepen- 
dent of frequency and width of the ultrasonic beam, this 
deduction is valid only for situations in which rather “ex- 
treme Bragg conditions” occur, i.e., high frequencies and 
weak sound beam divergence (or large interaction width). 
Whenever these condit.ions are only partially fulfilled, the 
approximation should be modified and additional terms [in 
this case the second term in E.q. ( 1 1 ), which is a triple 
integral] in the series expansion must be taken into ac- 
count. Experimentally it is observed that the quality of the 
first diffraction order images of small objects positioned in 
the ultrasonic field between the transducer and the light 
beam improves with increasing ultrasonic frequency, with 
the best images occurring for 18 MHz and above.“0$21 

I 

Note that in this approximation the relative intensity 
of the IIrst diffraction order, focused to a point by a lens 
system, for the case of a uniform sound field of width 2 L, 
becomes 

II v2 
r=3 7 (24) 

tiJta1 
with u the Raman-Nath parameter kn^2L. This result is in 
agreement with the Aggarwal solution”” and corresponds 
to the first term in the Phariseau solution for exact Bragg 
conditions in the interaction of plane uniform sound and 
light beams.“5 

The same approximations needed to obtain Eqs. (20) 
and (23) can be used in an analogous way to deduce the 
expressions for higher diffraction orders. We suppose for 
simplification that L, = -L- = L. 

3. Second order m=2 
The expression for the spectral decomposition of the 

second diffraction order for a small uniform light beam 
incident at the minus second Bragg angle becomes 

~,(n,~k,+K,L)ZCnok,+K> ==& 
A, Dnok 

2Tz(-K) wC--~Z(~okdWl~&. 

no& + UC’2 > 
nok 

nok, - (K/2 ) 
n ~ 

0. )I dz” dz’, (25) 

and the field distribution can be approximated by 

/10Dk4~+i2 
%EJJ) ZilKZ( -K) exp[ -inok(2L cos 2pR-t-g2pB)]eap 

-t 
J S(OJIP’ 

4 ;g O,-zl--L 
~ L QB 

Int5/2aR[ -2z,,~-z,]cm i%kJrF& dz,, 

with Int,[u,h] the interval function defined as the difference of two Heaviside functions so that 

Int,J&] = 1 if a~&$, 

Tnt,[&] =O everywhere else. 

Introducing the Klein-Cook-Mayer parameter’ for a uniform plane sound wave of width 2L, 

Q=2q~gwL) ==up, 

(26) 

(27) 

(28) 

and combining partial integration with rules for calculating the derivatives of Heaviside functions,16 we find that 
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%GL, z 
A0 Dk% iA2 
JjyZ( -K) expt --iM2~ cos 2(ppB+@rpRj] 

X -ilfrS 0 -s S 0 -5 Intl[-2q?B(2L.),2pB(2L.)] 
i Q ( ’ 4~) ( ’ 4~) 

(29) 

IA) 

IB) 

-’ Q J-L 

CC) 

(D) 

Again, one can verify that these results match the Ag- 
garwal results for uniform plane-wave interaction by as- 
suming S(O,z) equal to unity over the interval (- L,L), 
and integrating along the 5 axis in the exit plane over 
(-4Q?J3L,4p,L). 

Term (A) in Eq. (29 j indicates that the second-order 
field distribution at the exit plane consists of a large image 
of the sound field in the second power which extends over 
the range ( -4pBL,4q2,L). On the other hand, terms (B) 
and (C) represent two images of the sound beam with the 
same dimensions as the image in the first diffraction order, 
i.e., 4q?&. One of them is upshifted and the other down- 
shifted with respect to the center g=O over a distance 
2g?& The result is that these images are adjoining and 
that their center-to-center separation at the exit plane is 
equal to 4pBL. Further use of partial integration proves 
that the fourth term (D j corresponds to a second-order 
effect in 2L/Q for sufficiently high ultrasonic frequenc.ies 
and in the assumption that S” and its derivatives are slowly 
varying functions. Seeing the incorporation of an object as 
shadows in a uniform (amplitude equal to unity) sound 
field which extends from -L to L and neglecting all 
second- and higher-order terms in 2L/Q, we find theoret- 
ical evidence for the presence of two adjoining images of 
the sound beam in the second diffraction order, as shown 
for an experimental example in Fig. 8 (Na”). From a 

FIG. 8. First- and second-order diffraction fields of an ultrasonic beam 
containing the shadows of a nut at a frequency of 12 MHz (Ref. 21). 

theoretical point of view, one can explain the fact that the 
images in the second diffraction order are less distinct be- 
cause the additional terms also can play a role in the biur- 
ring of the field distribution. In the first place, term (A) 
would appear as an enlarged image superimposed on the 
adjacent images (although it does not show up in the ex- 
perimental examples) and for lower frequencies term (D) 
has to be taken into account along with additional terms in 
the series expansion for the spectral decomposition of the 
second ditb-action order. Important for the imaging is the 
phase factor in terms (B) and (C) of Eq. (29) which is 
determined by the value of Q. Analyzing the intensity dis- 
tribution in the case of a uniform sound field of width 2 L, 
one can expect theoretically that the best reproduction of 
the two adjoining images occurs for a value of Q equal to 
4~. Figure 9 compares the second orders for a small light 

I 
I, (10 -4) 

E 30 -~---u L *ri 2 &La rl, 8 20 5 IO 
/ -;-- JT\, 

\ /---.’ 
s o-..-. \ --+ 

-3-2-l 0 I 2 3 
( (units: 2cp8 I,) 

1 I, (lo-‘) -- --.-.- . . (J 
I ;~[~~~Lj(~ j 

“.- --....... 
-3-2-I 0 1 2 3 

< (units: 2pgL) 

FIG. 9. Theoretical calculations of the second-order diffracted field in- 
tensity of a uniform and a shadow containing ultrasonic field according to 
the first three terms in Eq. (29) relative to the maximum of the first 
diffraction order intensity (Q=b, L=3 cm). 
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beam incident at -2~~ which is diffracted by a uniform 
and a shadow-containing sound field, at this specific value. 

As a system of lenses is used in experiments to view 

dieted linear dependence of the center-to-center separation 
on F and L as is shown in Fig. 10. 

each order on a screen, the above theoretical deduction 
predicts that the center-to-center separation of the two ad- 
joining images within the second diffraction order is pro- 
portional to the width of the ultrasonic beam and to its 
frequency. Experiments performed by Na” for different 
ultrasonic frequencies and beam widths confirm this pre- 

4. Third order m -= 3 

For the third diffraction order of a small uniform light 
beam incident at the minus third Bragg angle, we use the 
same approximations and find the following expression for 
the spectral decomposition: 

Subsequently, the field distribut,ion becomes 

w,i;&L) zi - 
A,] DlPn$P 

8~zI--3(Kj?91 exp[-W(2L cos 3qB+53rpB)]exp ~(o,z2~e~-iw%$3~2 
- ,- 

P-e 

J 

.L? 
x 

-L 
TntyaP, [ -2r,--z,,L--z,--z,]e-‘“ok4’FZB’~ &, &. 

Calculating the leading terms also in this case, we obtain 

2 
--S$SIO,--L)S(O,L)S exp[ -iQ]In$[ -2pBL,2qBL] 

4 L’ 
--_;~SC’O,L)S(O,L)S Int5[ -2qB(3L),--2g?,&l 

2L 
-i- - - - third- and higher-order terms in - 

Q 

(309 

(31) 

(329 

iA 

(C9 

iE9 

CF9 

I 

In this third-order diffraction field, we can distinguish (C)l, and three adjoining images J’(D), (E), and (F)] of 
a triple-enlarged (compared to the image in the first dif- the same dimensions as the first diEaction order image 
fraetion order) cubic power of the sound image over the with a center-to-center separation equal to 4pBL. As a 
interval ( -6pnL,6pBL) (A), two double-enlarged im- consequence, the field distribution in the third ditlkaction 
ages in the second power centered at c = f 2~~ L [(B) and order of a small light beam incident at - 3pR, diffracted by 
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a uniform field in which an object is incorporated in the 
form of a shadow, will contain information about this ob- 
ject in the form of three adjacent images, once centered, 
once shifted in positive g direction by 4pBL, and once in 
negative direction shifted over the same distance. As in the 
case for the second diffraction order, additional terms 
cause blurring and reduce the quality of the three images. 
An experimental example of this triple imaging is shown in 
Fig. 1, while Fig. 11 illustrates the effect of a shadow in a 
uniform sound field on the third diffraction order for the 
same parameters as in Fig. 9. The theory predicts the in- 
tensity of the image in the center lobe to be four times as 
large as the shifted images. Analyzing the phase terms in 
Eq. (32) and reasoning analogously as in the case of a 
uniform sound beam, one finds again that the best imaging 
can be obtained for Q equal to 4~. 

5. Arbitrary order m 
In general, for a thin light beam incident at the angle 

-~Q)B, Rq. ( 17) for the mth-order diffraction field 
(m>l) can also be written in the following form which 
suggests a cumulative effect: 

Xexp[ --inok(2L cos m(~B+ma&)] 

xF,($-ym=L). 
with 

Fr(s,zr,> = 
I 

+ S(o,z,_l)e-i~0~2(~-l)~~~-] 
-L 

xF,-,( -z~~,-~,z~~~)e~~~~*~‘B(-~~-~-~~ dz,-, 

and 

Fo(s,zo) =S( -s). 

Retaining only the predominant terms in this expres- 
sion, we obtain: 

(34) 
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FIG. 10. Experimental confirmation of the linear dependence of the 
center-to-center separation of the double images in the second diffraction 
order on ultrasonic frequency and beam width. 

FIG. 11. Theoretical calculations of the third-order diffracted field inten- 
sity of 3 uniform and 3 shadow containing ultrasonic field according to 
the first six terms in Eq. (32) relative to the maximum of the first dii- 
fraction arder intensity (Q=47r, L=3 cm). 
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where the coefficients -4i.j can be calculated from the fol- 
lowing recurrence relation: 

&ii ‘,‘tz3 E 
&y..... 1) 

la,! (m-&1)())12&-l+l) if k-+km, 

i-1 k-l 

A:!J”== ]r: ii~~lj- 1 A$’ if k+I=m+l, 
j-1 j;. 1 

UW 

(35b) 

and 

,+qs1. (3%) 

The terms with k= 1 indicate that m adjoining images 
of the sound cross section contribute to the field distribu- 
tion in the mth diffracted order. These images are demag- 
nified by a factor ‘3~~ compared to the real sound field and 
the distance from center to center is equal to 4~&. 

profiled sound waves. We found that the first term in the 
series expansions for the spectral distribution of mth dif- 
fracted field contains Irn ]-fold information about the 
sound profile. Recalling that the mth diffraction order in- 
tensity is maximal for light waves incident at - m times the 
Bragg angle and limiting ourselves to this first term in the 
series expansions we could obtain theoretical evidence for 
the simultaneous appearance of multiple images in the 
higher diffraction orders when a convergent light beam is 
illuminating a sound field in Bragg conditions. This theory 
also explains the mirror effect for positive and negative 
diffraction orders and its basic ideas predict a linear depen- 
dence of the center-to-center separation of the images 
within the higher diffraction orders on the ultrasonic 
frequency and beam width as has been experimentally 
verified. 

E. Using a convergent lightbeam ACKNOWLEDGMENTS 

As a first approximation, we may imagine a number of 
thin uniform light rays, incident at di&rent angles, as a 
rudimentary model for a convergent light beam. The ag- 
gregation of the diffraction extrema for all those rays inci- 
dent at specific Bragg angles then explains the simulta- 
neous observation of a single image in the first diffraction 
orders and multiple adjoining images in the higher diffrac- 
tion orders as was repotted by Martin and co-workers.“’ If 
the convergent beam is symmetric with respect to the nor- 
mal axis, the images in positive orders are mirror images of 
the negative diffraction orders due to the symmetry prop- 
erty given in Eq. ( 12). We note that the angular aperture 
of the symmetrically incident convergent beam must be 
larger than 271 Bragg angles in order to generate a positive 
and negative m-multiple image for a well-chosen 
frequency-width combination of the sound field. The the- 
oretically predicted proportionality of the leading terms in 
the mth diffraction order to ( L/Q)” [Eq. (34)] indicates 
that the higherorder images can be observed only by low- 
ering the ultrasonic frequencies. Subsequently, the quality 
of the lower ditfraction order images becomes poorer when 
higher-order images are observed. The blurring of these 
lower diffraction order images at smaller Q/L values 
means that, from a theoretical point of view, additional 
terms in the series expansion of their field distributions 
should be taken into account. 
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Ill. CONCLUSIONS 

Using Fourier analysis and a backsubstitution method, 
we derived general expressions for the angular spectrum of 
the diffracted orders of profiled light after interaction with 
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